第三题的解析
2个回答
展开全部
原式=48*{1/[(3+2)(3-2)]+1/[(4+2)(4-2)]+…+1/[(100+2)(100-2)]}
=48*[1/(5*1)+1/(6*2)+…+1/(102*98)]
=48*[(1/4)*(1/1-1/5)+(1/4)*(1/2-1/6)+(1/4)*(1/3-1/7)+…+(1/4)*(1/98-1/102)]
=12*[(1/1-1/5)+(1/2-1/6)+(1/3-1/7)+(1/4-1/8)+(1/5-1/9)+…+(1/4)*(1/94-1/98)+(1/4)*(1/95-1/99)+(1/4)*(1/96-1/100)+(1/4)*(1/97-1/101)+(1/4)*(1/98-1/102)]
=12*(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
<25-12*4/99
又48/99<0.5,所以最接近25
用到公式1/AB=(1/B-1/A)*[1/(A-B)]
=48*[1/(5*1)+1/(6*2)+…+1/(102*98)]
=48*[(1/4)*(1/1-1/5)+(1/4)*(1/2-1/6)+(1/4)*(1/3-1/7)+…+(1/4)*(1/98-1/102)]
=12*[(1/1-1/5)+(1/2-1/6)+(1/3-1/7)+(1/4-1/8)+(1/5-1/9)+…+(1/4)*(1/94-1/98)+(1/4)*(1/95-1/99)+(1/4)*(1/96-1/100)+(1/4)*(1/97-1/101)+(1/4)*(1/98-1/102)]
=12*(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
<25-12*4/99
又48/99<0.5,所以最接近25
用到公式1/AB=(1/B-1/A)*[1/(A-B)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询