
求详细解答过程。谢谢
1个回答
展开全部
解
f(x)=√2cos(x-π/12)
f(π/3)=√2cos(π/3-π/12)
=√2cos(π/4)
=√2×(√2/2)
=1
∵θ∈(3π/2,2π)
∴sinθ<0
∵cosθ=3/5
∴sinθ=-√1-cos²θ=-4/5
∴f(θ-π/6)
=√2cos(θ-π/6-π/12)
=√2cos(θ-π/4)
=√2(cosθcosπ/4+sinθsinπ/4)
=√2×(√2/2)×(3/5-4/5)
=-1/5
f(x)=√2cos(x-π/12)
f(π/3)=√2cos(π/3-π/12)
=√2cos(π/4)
=√2×(√2/2)
=1
∵θ∈(3π/2,2π)
∴sinθ<0
∵cosθ=3/5
∴sinθ=-√1-cos²θ=-4/5
∴f(θ-π/6)
=√2cos(θ-π/6-π/12)
=√2cos(θ-π/4)
=√2(cosθcosπ/4+sinθsinπ/4)
=√2×(√2/2)×(3/5-4/5)
=-1/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询