关于复合函数的极限运算法则的小问题??
在高数书上有道题求极限的有个步骤是这样的:lime^lny=e^limlny,这个是根据什么来的呢??类似的还有恒等式limu^v=e^limvlnu,我知道做题时这个恒...
在高数书上有道题求极限的有个步骤是这样的:lim e^ln y=e^lim ln y,这个是根据什么来的呢?? 类似的还有恒等式lim u^v=e^lim vln u,我知道做题时这个恒等式用得很多,但是怎么来的我始终模模糊糊的,望高手给予小白指点~~~PS:x=e^ln x,这个我知道。但是lim 跑到指数里去是怎么用的,很纠结~
展开
2个回答
展开全部
有个定理(也许是引理?……):
若lim(x→x0)f(x)=y0,lim(y→y0)g(y)=l,且存在正数a使得在(x0-a,x0+a)内f(x)≠y0,则lim(x→x0)g(f(x))=l (证明就是直接把极限的定义套进去就完了)
在这里,f(x)=lnx,g(y)=e^y,可以看出f(x)确实满足那个看起来很奇葩的条件“存在正数a使得在(x0-a,x0+a)内f(x)≠y0”。
严格的说法就是,你做到最后发现lim(x→x0)f(x)(即lnx)存在(=y0),且lim(y→y0)g(y)(即e^y)存在(=g(y0))(因为g连续嘛),所以原极限=lim(x→x0)g(f(x))=g(y0)
若lim(x→x0)f(x)=y0,lim(y→y0)g(y)=l,且存在正数a使得在(x0-a,x0+a)内f(x)≠y0,则lim(x→x0)g(f(x))=l (证明就是直接把极限的定义套进去就完了)
在这里,f(x)=lnx,g(y)=e^y,可以看出f(x)确实满足那个看起来很奇葩的条件“存在正数a使得在(x0-a,x0+a)内f(x)≠y0”。
严格的说法就是,你做到最后发现lim(x→x0)f(x)(即lnx)存在(=y0),且lim(y→y0)g(y)(即e^y)存在(=g(y0))(因为g连续嘛),所以原极限=lim(x→x0)g(f(x))=g(y0)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-04-10
展开全部
不会的 啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询