第三题 过程
3个回答
展开全部
∵3sinA+4cosB=6
∴(3sinA+4cosB)^2=36
∴[9(sinA)^2+16(cosB)^2+24sinAcosB=36(1)
∵4sinB+3cosA=1
∴(4sinB+3cosA)^2=1
∴16(sinB)^2+9(cosA)^2+24cosAsinB=1(2)
(1)+(2):9(sinA)^2+16(cosB)^2+24sinAcosB]+[16(sinB)^2+9(cosA)^2+24cosAsinB]=37
∴[9(sinA)^2+9(cosA)^2]+[16(cosB)^2+16(sinB)^2]+24(sinAcosB+cosAsinB)=37
∴9+16+24sin(A+B)=37
∴24sin(π-C)=12
∴sinC=1/2
∴C=π/6或5π/6
∵当C=5π/6,即A+B=π/6时,A<π/6
∴cosA>cos(π/6)=(√3)/2
∴3cosA>3(√3)/2>1
∵sinA>0
∴4sinB>0
∴4sinB+3cosA>1,与题中的4sinB+3cosA=1矛盾
∴C=π/6
∴(3sinA+4cosB)^2=36
∴[9(sinA)^2+16(cosB)^2+24sinAcosB=36(1)
∵4sinB+3cosA=1
∴(4sinB+3cosA)^2=1
∴16(sinB)^2+9(cosA)^2+24cosAsinB=1(2)
(1)+(2):9(sinA)^2+16(cosB)^2+24sinAcosB]+[16(sinB)^2+9(cosA)^2+24cosAsinB]=37
∴[9(sinA)^2+9(cosA)^2]+[16(cosB)^2+16(sinB)^2]+24(sinAcosB+cosAsinB)=37
∴9+16+24sin(A+B)=37
∴24sin(π-C)=12
∴sinC=1/2
∴C=π/6或5π/6
∵当C=5π/6,即A+B=π/6时,A<π/6
∴cosA>cos(π/6)=(√3)/2
∴3cosA>3(√3)/2>1
∵sinA>0
∴4sinB>0
∴4sinB+3cosA>1,与题中的4sinB+3cosA=1矛盾
∴C=π/6
2014-04-27
展开全部
A 两个式子分别平方 相加 再用公式 自己练一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-04-27
展开全部
有奖励吗,有就做
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询