图中第九题 高一 数学
展开全部
(1)f(x) = [cos(π/3)cosx - sin(π/3)sinx] [cos(π/3)cosx + sin(π/3)sinx]
= 3/4 (cosx)^2 - 1/4 (sinx)^2
= 3/8 (cos(2x)+1)- 1/8 (1-cos (2x))
= 1/2 cos(2x)+ 1/4
(2) f(x)周期为T = 2π/2 = π
(3) h(x) = 1/2 cos(2x) + 1/4 + 1/2 sin(2x) - 1/4
= 1/2 cos(2x) + 1/2 sin(2x)
= 根2/2 sin(2x+π/4)
由此可知,h(x)最大值为 根2/2,令2x+π/4=2nπ+π/2得对应x的集合为{x|x=nπ+π/8,n取任意整数}
= 3/4 (cosx)^2 - 1/4 (sinx)^2
= 3/8 (cos(2x)+1)- 1/8 (1-cos (2x))
= 1/2 cos(2x)+ 1/4
(2) f(x)周期为T = 2π/2 = π
(3) h(x) = 1/2 cos(2x) + 1/4 + 1/2 sin(2x) - 1/4
= 1/2 cos(2x) + 1/2 sin(2x)
= 根2/2 sin(2x+π/4)
由此可知,h(x)最大值为 根2/2,令2x+π/4=2nπ+π/2得对应x的集合为{x|x=nπ+π/8,n取任意整数}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询