mysql 如何处理亿级数据

 我来答
依然特雷西sky
高粉答主

2020-04-13 · 繁杂信息太多,你要学会辨别
知道答主
回答量:1511
采纳率:33%
帮助的人:69.6万
展开全部

1、数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。 

2、最后collect 为 10万条记录,数据库表占用硬盘1.6G。OK ,看下面这条sql语句:  select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的  select id,title from collect limit 90000,10; 从9万条开始分页。

3、8-9秒完成。

4、看下面一条语句:  select id from collect order by id limit 90000,10; 很快,0.04秒就OK。因为用了id主键做索引当然快。

badkano
推荐于2017-11-29 · 知道合伙人体育行家
badkano
知道合伙人体育行家
采纳数:144776 获赞数:885372
团长

向TA提问 私信TA
展开全部
第一阶段:
1,一定要正确设计索引
2,一定要避免SQL语句全表扫描,所以SQL一定要走索引(如:一切的 > < != 等等之类的写法都会导致全表扫描)
3,一定要避免 limit 10000000,20 这样的查询
4,一定要避免 LEFT JOIN 之类的查询,不把这样的逻辑处理交给数据库
5,每个表索引不要建太多,大数据时会增加数据库的写入压力

第二阶段:

1,采用分表技术(大表分小表)

a)垂直分表:将部分字段分离出来,设计成分表,根据主表的主键关联
b)水平分表:将相同字段表中的记录按照某种Hash算法进行拆分多个分表

2,采用mysql分区技术(必须5.1版以上,此技术完全能够对抗Oracle),与水平分表有点类似,但是它是在逻辑层进行的水平分表

第三阶段(服务器方面):

1,采用memcached之类的内存对象缓存系统,减少数据库读取操作
2,采用主从数据库设计,分离数据库的读写压力
3,采用Squid之类的代理服务器和Web缓存服务器技术

PS:由于篇幅问题,我只简单说一些基本概念,其实里面每个知识点关系到的内容都很多。特别是第一阶段,很多工作几年的程序员,都不能完全理解。我觉得要真正理解索引,最好的办法就是在1000W-亿级以上的数据,进行测试SQL语句,再结合 explain 命令进行查看SQL语句索引情况。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式