求积分题∫dx/(3+sin²x)
1个回答
展开全部
不要那样做,可以用万能置换公式:
因为 3sin²x+3cos²x=3
所以 4sin²x+3cos²x=3+sin²x
∫dx/(3+sin²x)
=∫(cos²x+sin²x)dx/(3cos²x+4sin²x) 上下同除以cos²x
=∫(1+tan²x)dx/(3+4tan²x) 因为dtanx=(1/cos²x)dx, 所以乘以cos²x.
=∫(cos²x+sin²x)dtanx/(3+4tan²x)
=(1/3)∫dtanx/[1+(4/3)tan²x]
=(1/3)arctan[(2/√3)tanx]+C
因为 3sin²x+3cos²x=3
所以 4sin²x+3cos²x=3+sin²x
∫dx/(3+sin²x)
=∫(cos²x+sin²x)dx/(3cos²x+4sin²x) 上下同除以cos²x
=∫(1+tan²x)dx/(3+4tan²x) 因为dtanx=(1/cos²x)dx, 所以乘以cos²x.
=∫(cos²x+sin²x)dtanx/(3+4tan²x)
=(1/3)∫dtanx/[1+(4/3)tan²x]
=(1/3)arctan[(2/√3)tanx]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询