已知函数f(x)=x^3+ax^2+bx+c在x= -2/3与x=1时都取得极值 1.求a、b、
展开全部
(1) 因为f(x)在x=-2/3 与x=1时都取得极值 所以f'(-2/3)=0 ,f'(1)=0
解得a=1/2 b=-2
所以f'(x)=3x^2-x-2 当x<-2/3或x>1时,f(x)单调递增,反之则递减
(2)令f'(x)=0 x=1,-2/3 ,因为f''(1)>0 所以f(1)是极小值 舍去 f''(-2/3)<0,所以是极大值,f(-2/3)=22/27 -c 又f(-1)=1/2 -c f(2)=2- c
要使原命题恒成立,即 max[f(x)]<c^2 即 f(2)<c^2 解得c<-2或c>1
【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】
解得a=1/2 b=-2
所以f'(x)=3x^2-x-2 当x<-2/3或x>1时,f(x)单调递增,反之则递减
(2)令f'(x)=0 x=1,-2/3 ,因为f''(1)>0 所以f(1)是极小值 舍去 f''(-2/3)<0,所以是极大值,f(-2/3)=22/27 -c 又f(-1)=1/2 -c f(2)=2- c
要使原命题恒成立,即 max[f(x)]<c^2 即 f(2)<c^2 解得c<-2或c>1
【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询