已知函数f(x)=-sin^2x+sinx+a (1)当f(x)=0有实数解时,求a的取值范围。

(2)若x∈R,有1≤f(x)≤17/4,求a的取值范围。... (2)若x∈R,有1≤f(x)≤17/4,求a的取值范围。 展开
weigan4110
推荐于2016-03-24 · TA获得超过27.9万个赞
知道大有可为答主
回答量:2.6万
采纳率:14%
帮助的人:9160万
展开全部
解:
(1)设sinx=m,则m∈[-1,1]
由f(x)=-sin^2x+sinx+a有实数解得
-m^2+m+a=0有实数解且解在[-1,1]范围内
∴△=1+4a≥0(a≥-1/4) 且 m=[1±√(1+4a)]/2∈[-1,1]
由m=[1±√(1+4a)]/2∈[-1,1]得
-1≤√(1+4a)≤1或 -1≤√(1+4a)≤3
即a≤0或-1/4≤a≤2
又∵a≥-1/4
∴a的范围是[-1/4,2]
(2)当x∈R时m=sinx∈[-1,1]
f(x)=-sin^2x+sinx+a=-m^2+m+a=-(m-1/2)^2+a+1/4
∵1≤f(x)≤17/4
∴1≤-(m-1/2)^2+a+1/4≤17/4
-17/4≤(m-1/2)^2-a-1/4≤-1
当m∈[-1,1]时(m-1/2)^2∈[0,9/4]
∴-a-1/4≤(m-1/2)^2-a-1/4≤9/4-a-1/4
∵必须满足-17/4≤(m-1/2)^2-a-1/4≤-1
∴-a-1/4≥-1且9/4-a-1/4≤-17/4
∴ 4≤a≤9
a的范围是[4,9]
探牛人
2014-05-03 · 超过46用户采纳过TA的回答
知道答主
回答量:85
采纳率:0%
帮助的人:107万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式