华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
2014-08-21 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132162
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
解:
∵AD‖BE
∴∠4=∠DAE
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( 等量加等量,和相等 )
即∠BAE=∠DAE( 等量代换 )
∴∠4=∠BAE( 等式传递性 )
∵∠3=∠4(已知)
∴∠3=∠BAE
∴AB‖CD
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
祝你学习进步,更上一层楼!
不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~
∵AD‖BE
∴∠4=∠DAE
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( 等量加等量,和相等 )
即∠BAE=∠DAE( 等量代换 )
∴∠4=∠BAE( 等式传递性 )
∵∠3=∠4(已知)
∴∠3=∠BAE
∴AB‖CD
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
祝你学习进步,更上一层楼!
不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-08-21
展开全部
解:∵AB‖CD(已知)
∴∠4=∠BAE( 两直线平行,同位角相等 )
∵∠3=∠4(已知)
∴∠3=∠BAE( 等式传递性 )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( 等量加等量,和相等 )
即∠BAE=∠DAE( 等量代换 )
∴∠3=∠DAE
∴AD‖BE( 内错角相等,两直线平行 )
∴∠4=∠BAE( 两直线平行,同位角相等 )
∵∠3=∠4(已知)
∴∠3=∠BAE( 等式传递性 )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( 等量加等量,和相等 )
即∠BAE=∠DAE( 等量代换 )
∴∠3=∠DAE
∴AD‖BE( 内错角相等,两直线平行 )
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为AD平行于BC
所以∠4=∠2+∠CAF
因为∠1=∠2
所以∠4=∠1+∠CAF
因为∠3=∠ACD+∠CAF
∠3=∠4
所以∠1=∠ACD
所以AB平行于CD
所以∠4=∠2+∠CAF
因为∠1=∠2
所以∠4=∠1+∠CAF
因为∠3=∠ACD+∠CAF
∠3=∠4
所以∠1=∠ACD
所以AB平行于CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询