求圆心在直线x-y-4=0上,并且经过圆x^2+y^2+6x-4=0与圆x^2+y^2+6y-28

求圆心在直线x-y-4=0上,并且经过圆x^2+y^2+6x-4=0与圆x^2+y^2+6y-28=0的交点的圆的方程。详解!... 求圆心在直线x-y-4=0上,并且经过圆x^2+y^2+6x-4=0与圆x^2+y^2+6y-28=0的交点的圆的方程。详解! 展开
小海爱科学
高粉答主

2014-09-11 · 一起来感受自然科学的奥妙吧!
小海爱科学
采纳数:10495 获赞数:71175

向TA提问 私信TA
展开全部
解:
设经过两圆x²+y²+6x-4=0和x²+y²+6y-28=0
交点的圆的方程为x²+y²+6x-4+λ(x²+y²+6y-28)=0
即(1+λ)x²+(1+λ)y²+6x+6λy-4-28λ=0
其圆心的坐标是(-3/(1+λ),-3λ/(1+λ) )
∵圆心在直线x-y-4=0上
∴有3/(1+λ)-3λ(1+λ)+4=0,解得λ=-7
∴所求的圆的方程为x²+y²+6x-4-7(x²+y²+6y-28)=0
即x²+y²-x+7y-32=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式