高等数学 求极限 关于n的求极限问题 10
∵n^2/(n^2+nπ)<=n(1/(n^2+π)+1/(n^2+2π)+……+1/(n^2+nπ)<=n^2/(n^2+π)
lim[n-->∞]n^2/(n^2+nπ)=lim[n-->∞]n^2/(n^2+π)=1
∴ 据夹逼定理知,lim[n-->∞]n(1/(n^2+π)+1/(n^2+2π)+……+1/(n^2+nπ)=1
∵ (1^2+2^2+…+n^2)/(n^3+n^2)<=(1/(n^3+1)+4/(n^3+4)+…+n^2/(n^3+n^2)
<(1^2+2^2+…+n^2)/(n^3+1)
即:n(n+1)(2n+1)/[6(n^3+n^2)]<=(1/(n^3+1)+4/(n^3+4)+…+n^2/(n^3+n^2)
<n(n+1)(2n+1)/[6(n^3+1)]
lim[n-->∞]n(n+1)(2n+1)/[6(n^3+n^2)]=lim[n-->∞]n(n+1)(2n+1)/[6(n^3+1)]=1/3
∴据夹逼定理知,lim[n-->∞](1/(n^3+1)+4/(n^3+4)+…+n^2/(n^3+n^2)=1/3