如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取A

如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与D... 如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.
(1)FG与DC的位置关系是 ,FG与DC的数量关系是 ;
1. (2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.

*机智的小伙伴们~只需回答第二小问就好啦~😊
展开
 我来答
tony罗腾
2014-06-17 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293886
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
解:(1)FG⊥CD,FG=
1 除以
2
CD.

(2)延长ED交AC的延长线于M,连接FC、FD、FM,
∴四边形BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形,
∴ED=BD=CM.
∵∠AEM=∠A=45°,
∴△AEM是等腰直角三角形.
又F是AE的中点,
∴MF⊥AE,EF=MF,∠EDF=∠MCF.
∵在△EFD和△MFC中

DE=MC
∠DEF=∠CMF
EF=MF


∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90°,
∴∠MFC+∠DFM=90°.
即△CDF是等腰直角三角形,
又G是CD的中点,
∴FG=
1 除以
2
CD,FG⊥CD.
追问
四边形BCMD是矩形怎么证?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式