如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取A
如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与D...
如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.
(1)FG与DC的位置关系是 ,FG与DC的数量关系是 ;
1. (2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
*机智的小伙伴们~只需回答第二小问就好啦~😊 展开
(1)FG与DC的位置关系是 ,FG与DC的数量关系是 ;
1. (2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
*机智的小伙伴们~只需回答第二小问就好啦~😊 展开
1个回答
2014-06-17 · 知道合伙人软件行家
关注
展开全部
解:(1)FG⊥CD,FG=
1 除以
2
CD.
(2)延长ED交AC的延长线于M,连接FC、FD、FM,
∴四边形BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形,
∴ED=BD=CM.
∵∠AEM=∠A=45°,
∴△AEM是等腰直角三角形.
又F是AE的中点,
∴MF⊥AE,EF=MF,∠EDF=∠MCF.
∵在△EFD和△MFC中
DE=MC
∠DEF=∠CMF
EF=MF
,
∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90°,
∴∠MFC+∠DFM=90°.
即△CDF是等腰直角三角形,
又G是CD的中点,
∴FG=
1 除以
2
CD,FG⊥CD.
1 除以
2
CD.
(2)延长ED交AC的延长线于M,连接FC、FD、FM,
∴四边形BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形,
∴ED=BD=CM.
∵∠AEM=∠A=45°,
∴△AEM是等腰直角三角形.
又F是AE的中点,
∴MF⊥AE,EF=MF,∠EDF=∠MCF.
∵在△EFD和△MFC中
DE=MC
∠DEF=∠CMF
EF=MF
,
∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90°,
∴∠MFC+∠DFM=90°.
即△CDF是等腰直角三角形,
又G是CD的中点,
∴FG=
1 除以
2
CD,FG⊥CD.
追问
四边形BCMD是矩形怎么证?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询