将函数f(x)=ln(x/1+x)展开成x-1的幂级数,并指出其收敛域
2个回答
展开全部
f(x) = ln[x/(1+x)] = ln[(1+x-1)/(2+x-1)] = ln(1+x-1) - ln(2+x-1)
= ln(1+x-1) - ln2 - ln{1+(x-1)/2] = g(x) - ln2 -h(x)
g'(x) = 1/(1+x-1) = ∑<n=0,∞>(-1)^n(x-1)^n,
g(x)= ∫<1,x>dt/t = ∑<n=0,∞>(-1)^n(x-1)^(n+1)/(n+1),
h'(x) = 1/(1+x-1) = ∑<n=0,∞>(-1)^n(x-1)^n/2^n,
h(x)= -ln2+∫<1,x>dt/(1+t) = -ln2+∑<n=0,∞>(-1)^n(x-1)^(n+1)/[(n+1)2^n],
得 f(x)=∑<n=0,∞>(-1)^n(x-1)^(n+1)/(n+1) - ∑<n=0,∞>(-1)^n(x-1)^(n+1)/[(n+1)2^n]
= ∑<n=0,∞>(-1)^n(1+1/2^n)(x-1)^(n+1)/(n+1).
收敛域 -1<x-1≤1, -1<(x-1)/2≤1, 联立解得 0<x≤2,
= ln(1+x-1) - ln2 - ln{1+(x-1)/2] = g(x) - ln2 -h(x)
g'(x) = 1/(1+x-1) = ∑<n=0,∞>(-1)^n(x-1)^n,
g(x)= ∫<1,x>dt/t = ∑<n=0,∞>(-1)^n(x-1)^(n+1)/(n+1),
h'(x) = 1/(1+x-1) = ∑<n=0,∞>(-1)^n(x-1)^n/2^n,
h(x)= -ln2+∫<1,x>dt/(1+t) = -ln2+∑<n=0,∞>(-1)^n(x-1)^(n+1)/[(n+1)2^n],
得 f(x)=∑<n=0,∞>(-1)^n(x-1)^(n+1)/(n+1) - ∑<n=0,∞>(-1)^n(x-1)^(n+1)/[(n+1)2^n]
= ∑<n=0,∞>(-1)^n(1+1/2^n)(x-1)^(n+1)/(n+1).
收敛域 -1<x-1≤1, -1<(x-1)/2≤1, 联立解得 0<x≤2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询