(2005?济南)如图,已知平行四边形ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:CD=F
(2005?济南)如图,已知平行四边形ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:CD=FA;(2)若使∠F=∠BCF,平行四边形ABCD的...
(2005?济南)如图,已知平行四边形ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:CD=FA;(2)若使∠F=∠BCF,平行四边形ABCD的边长之间还需再添加一个什么条件?请你补上这个条件,并进行证明(不要再增添辅助线).
展开
1个回答
展开全部
解答:(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB.
又∵CE的延长线交BA的延长线于点F,
∴∠CDA=∠DAF.
∵E是AD中点,
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.
(2)要使∠F=∠BCF,需平行四边形ABCD的边长之间是2倍的关系,即BC=2AB,
证明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四边形ABCD是平行四边形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.
∴CD∥AB.
又∵CE的延长线交BA的延长线于点F,
∴∠CDA=∠DAF.
∵E是AD中点,
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.
(2)要使∠F=∠BCF,需平行四边形ABCD的边长之间是2倍的关系,即BC=2AB,
证明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四边形ABCD是平行四边形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询