如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是 的
如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求...
如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是 的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.
展开
(1)证明见解析;(2) . |
试题分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线. (2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长. (1)∵AB是⊙O的直径, ∴∠ADB=∠ADC=90°, ∵∠B=∠CAD,∠C=∠C, ∴△ADC∽△BAC, ∴∠BAC=∠ADC=90°, ∴BA⊥AC, ∴AC是⊙O的切线. (2)∵BD=5,CD=4, ∴BC=9, ∵△ADC∽△BAC(已证), ∴ ,即AC 2 =BC×CD=36, 解得:AC=6, 在Rt△ACD中,AD= , ∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD, ∴CA=CF=6, ∴DF=CA-CD=2, 在Rt△AFD中,AF= . |
收起
为你推荐: