在△ABC中,求证:a?ccosBb?ccosA=sinBsinA
展开全部
由正弦定理
(a-ccosB)/(b-ccosA)
=(sinA-sinCcosB)/(sinB-sinCcosA)
=[sin(π-B-C)-sinCcosB]/[sin(π-A-C)-sinCcosA]
=[sin(B+C)-sinCcosB]/[sin(A+C)-sinCcosA]
=(sinBcosC+sinCcosB-sinCcosB)/(sinAcosC+sinCcosA-sinCcosA)
=(sinBcosC)/(sinAcosC)
=sinB/sinA
(a-ccosB)/(b-ccosA)
=(sinA-sinCcosB)/(sinB-sinCcosA)
=[sin(π-B-C)-sinCcosB]/[sin(π-A-C)-sinCcosA]
=[sin(B+C)-sinCcosB]/[sin(A+C)-sinCcosA]
=(sinBcosC+sinCcosB-sinCcosB)/(sinAcosC+sinCcosA-sinCcosA)
=(sinBcosC)/(sinAcosC)
=sinB/sinA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询