已知正项数列{an}的前n项和为Sn,Sn是14与(an+1)2的等比中项.(1)求证:数列{an}是等差数列;(2)若b1
已知正项数列{an}的前n项和为Sn,Sn是14与(an+1)2的等比中项.(1)求证:数列{an}是等差数列;(2)若b1=a1,且bn=2bn-1+3,求数列{bn}...
已知正项数列{an}的前n项和为Sn,Sn是14与(an+1)2的等比中项.(1)求证:数列{an}是等差数列;(2)若b1=a1,且bn=2bn-1+3,求数列{bn}的通项公式.
展开
1个回答
展开全部
(1)证明:∵
是
与(an+1)2的等比中项,
∴Sn=
(an+1)2,
∴n≥2时,Sn?1=
(an?1+1)2,
两式相减可得an=
(an+1)2-
(an?1+1)2,
化简可得(an-an-1-2)(an+an-1)=0,
∵an+an-1>0,
∴an-an-1=2,
∵S1=
(a1+1)2,∴a1=1,
∴数列{an}以1为首项,以2为公差的等差数列;
(2)解:∵bn=2bn-1+3,
∴bn+3=2(bn-1+3),
∵b1=a1=1,∴b1+3=4,
∴数列{bn+3}是以4为首项,2为公比的等比数列,
∴bn+3=4?2n-1=2n+1,
∴bn=2n+1-3.
Sn |
1 |
4 |
∴Sn=
1 |
4 |
∴n≥2时,Sn?1=
1 |
4 |
两式相减可得an=
1 |
4 |
1 |
4 |
化简可得(an-an-1-2)(an+an-1)=0,
∵an+an-1>0,
∴an-an-1=2,
∵S1=
1 |
4 |
∴数列{an}以1为首项,以2为公差的等差数列;
(2)解:∵bn=2bn-1+3,
∴bn+3=2(bn-1+3),
∵b1=a1=1,∴b1+3=4,
∴数列{bn+3}是以4为首项,2为公比的等比数列,
∴bn+3=4?2n-1=2n+1,
∴bn=2n+1-3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询