已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB

已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB.... 已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB. 展开
 我来答
梵秋卉2249
推荐于2016-03-22 · TA获得超过191个赞
知道答主
回答量:124
采纳率:100%
帮助的人:117万
展开全部
解答:证明:
连接DE,
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD,AD∥BC,
∴∠ADE=∠DEC,
∵AD=AE,
∴∠ADE=∠FED,
∴∠DEC=∠FED,
∵DF⊥AE,
∴∠DFE=∠C=90°,
在△DFE和△DCE中
∠DEF=∠DEC
∠DFE=∠C
DE=DE

∴△DFE≌△DCE,
∴DF=CD,
∵AB=CD,
∴DF=AB.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式