求此题目的解法,谢谢
2个回答
2015-02-22
展开全部
易证∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。(令x=π-x)
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(pi/2,pi)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(0,pi/2)(cosx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)dx
=π²/4
有疑问请追问,满意请采纳~\(≧▽≦)/~
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(pi/2,pi)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+ ∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(0,pi/2)(cosx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)dx
=π²/4
有疑问请追问,满意请采纳~\(≧▽≦)/~
更多追问追答
追答
易证∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。(令x=π-x)
因此,
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(pi/2,pi)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+pi/2∫(0,pi/2)(cosx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)dx
=π²/4
有疑问请追问,满意请采纳~\(≧▽≦)/~
易证∫(0,pi)xf(sinx)dx=pi/2∫(0,pi)f(sinx)dx。(令x=π
原积分=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+
pi/2∫(pi/2,pi)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)(sinx)^2n*dx/(sinx)^2n+(cosx)^2n+pi/2∫(0,pi/2)(cosx)^2n*dx/(sinx)^2n+(cosx)^2n
=pi/2∫(0,pi/2)dx
=π²/4
前两遍复制粘贴的有点乱
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询