已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.求证:∠BOC=90°+12∠A

已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.求证:∠BOC=90°+12∠A.... 已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.求证:∠BOC=90°+12∠A. 展开
 我来答
孙叔2785
推荐于2016-03-10 · 超过63用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:118万
展开全部
证明:∵∠ABC与∠ACB的平分线相交于点O,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB),
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=90°+
1
2
∠A,
即:∠BOC=90°+
1
2
∠A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式