设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x?t)f(t)dtx∫x0f(x?t)dt
设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x?t)f(t)dtx∫x0f(x?t)dt....
设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x?t)f(t)dtx∫x0f(x?t)dt.
展开
1个回答
展开全部
令x-t=u;
则:dt=d(-u)=-du;
f(x?t)dt=
f(u)d(?u)=
f(u)du.
因此:
=
=
(洛必达法则)
=
=
(洛必达法则)
=
=
.
则:dt=d(-u)=-du;
∫ | x 0 |
∫ | 0 x |
∫ | x 0 |
因此:
lim |
x→0 |
| ||
|
lim |
x→0 |
| ||||
|
=
lim |
x→0 |
| ||
x
|
=
lim |
x→0 |
| ||
|
=
lim |
x→0 |
f(x) |
f(x)+f(x)+xf′(x) |
=
f(0) |
f(0)+f(0)+0 |
=
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询