已知数列{an}的前n项和为Sn,且Sn=2n+2-2,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数{an}满足bn=Sn
已知数列{an}的前n项和为Sn,且Sn=2n+2-2,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数{an}满足bn=Snan,求数列{bn}的前n项和Tn....
已知数列{an}的前n项和为Sn,且Sn=2n+2-2,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数{an}满足bn=Snan,求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(Ⅰ)当n≥2时,an=Sn-Sn-1=2n+1,
又当n=1时,a1=S1=6,不符合上式,
∴an=
(n∈N*).
(Ⅱ)b1=1,
当n≥2时,bn=
=2(1-
),
∴Tn=b1+b2+…+bn
=2[(1-
)+(1-
)+…+(1-
)]
=2[n-(
+
+…+
)]
=2[n-
]
=2n-1+
.
∴Tn=
又当n=1时,a1=S1=6,不符合上式,
∴an=
|
(Ⅱ)b1=1,
当n≥2时,bn=
2(2n+1-1) |
2n+1 |
1 |
2n+1 |
∴Tn=b1+b2+…+bn
=2[(1-
1 |
22 |
1 |
23 |
1 |
2n+1 |
=2[n-(
1 |
22 |
1 |
23 |
1 |
2n+1 |
=2[n-
| ||||
1-
|
=2n-1+
1 |
2n |
∴Tn=
|