(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E,F分别是AD、BC的中点,连接EF,分别交AC、
(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E,F分别是AD、BC的中点,连接EF,分别交AC、BD于点M,N,试判断△OMN的形状,并加以证...
(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E,F分别是AD、BC的中点,连接EF,分别交AC、BD于点M,N,试判断△OMN的形状,并加以证明;(提示:利用三角形中位线定理)(2)如图2,在四边形ABCD中,若AB=CD,E,F分别是AD、BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N,请在图2中画图并观察,图中是否有相等的角?若有,请直接写出结论:______;(3)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是AD、BC的中点,连接FE并延长,与BA的延长线交于点M,若∠FEC=45°,判断点M与以AD为直径的圆的位置关系,并简要说明理由.
展开
展开全部
解:(1)结论:△OMN是等腰三角形(1分)
证明:如图1,取AB的中点H,连接HF,HE
∵E、F分别是AD、BC的中点,
∴HF∥AC,HF=
AC(2分)
∴∠FMC=∠HFE;
同理,HE∥BD,HE=
BD,
∴∠END=∠HEF;
又∵AC=BD,
∴HF=HE,
∴∠HEF=∠HFE,
∴∠END=∠FMC,(3分)
∴△OMN是等腰三角形.
(2)正确画图(如图2)(4分)
连接AC、BD,取AC、BD的中点H、G;
连接EG、GF、FH、EH;
∵E,F分别是AD、BC的中点,
∴EG=
AB,GF=
CD,FH=
AB,EH=
CD,
∵AB=CD,
∴EG=GF=FH=EH,
∴四边形EGFH是菱形.
∴∠GEF=∠HEF;
∵EG∥BM,
∴∠GEF=∠BMF,
∵HE∥CN,
∴∠CNF=∠HEF,
∴∠BMF=∠CNF.(5分)
(3)点M在以AD为直径的圆外(6分)
证明:如图3,由(2)的结论,∠M=∠FEC,
∵∠AEM=∠DEF,
∴∠M=∠DEF=45°,
∴∠MAD=90°
∴ME>AE,
又∵E是AD中点,
∴点M在以AD为直径的圆外.(7分)
证明:如图1,取AB的中点H,连接HF,HE
∵E、F分别是AD、BC的中点,
∴HF∥AC,HF=
1 |
2 |
∴∠FMC=∠HFE;
同理,HE∥BD,HE=
1 |
2 |
∴∠END=∠HEF;
又∵AC=BD,
∴HF=HE,
∴∠HEF=∠HFE,
∴∠END=∠FMC,(3分)
∴△OMN是等腰三角形.
(2)正确画图(如图2)(4分)
连接AC、BD,取AC、BD的中点H、G;
连接EG、GF、FH、EH;
∵E,F分别是AD、BC的中点,
∴EG=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∵AB=CD,
∴EG=GF=FH=EH,
∴四边形EGFH是菱形.
∴∠GEF=∠HEF;
∵EG∥BM,
∴∠GEF=∠BMF,
∵HE∥CN,
∴∠CNF=∠HEF,
∴∠BMF=∠CNF.(5分)
(3)点M在以AD为直径的圆外(6分)
证明:如图3,由(2)的结论,∠M=∠FEC,
∵∠AEM=∠DEF,
∴∠M=∠DEF=45°,
∴∠MAD=90°
∴ME>AE,
又∵E是AD中点,
∴点M在以AD为直径的圆外.(7分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询