
如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.(1)求证:∠FBD=∠CAD;(2)求证:BE⊥AC
如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.(1)求证:∠FBD=∠CAD;(2)求证:BE⊥AC....
如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.(1)求证:∠FBD=∠CAD;(2)求证:BE⊥AC.
展开
1个回答
展开全部
证明:(1)∵AD⊥BC,
∴∠ADC=∠BDF=90°,
∵在△ADC和△BDF中
,
∴△ADC≌△BDF(SAS),
∴∠FBD=∠CAD;
(2)∵∠BDF=90°,
∴∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
由(1)知:∠FBD=∠CAD,
∴∠CAD+∠AFE=90°,
∴∠AEF=180°-(∠CAD+∠AFE)=90°,
∴BE⊥AC.
∴∠ADC=∠BDF=90°,
∵在△ADC和△BDF中
|
∴△ADC≌△BDF(SAS),
∴∠FBD=∠CAD;
(2)∵∠BDF=90°,
∴∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
由(1)知:∠FBD=∠CAD,
∴∠CAD+∠AFE=90°,
∴∠AEF=180°-(∠CAD+∠AFE)=90°,
∴BE⊥AC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询