已知函数f(x)=13x3+2x2+ax+b,g(x)=ex(cx+d),且函数f(x)的导函数为f′(x),若曲线f(x)和g(
已知函数f(x)=13x3+2x2+ax+b,g(x)=ex(cx+d),且函数f(x)的导函数为f′(x),若曲线f(x)和g(x)都过点A(0,2),且在点A处有相同...
已知函数f(x)=13x3+2x2+ax+b,g(x)=ex(cx+d),且函数f(x)的导函数为f′(x),若曲线f(x)和g(x)都过点A(0,2),且在点A 处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥-2时,mg(x)≥f′(x)-2恒成立,求实数m的取值范围.
展开
1个回答
展开全部
(I)由已知得f(0)=2,g(0)=2,f'(0)=4,g'(0)=4,
而f'(x)=x2+4x+a,g'(x)=ex(cx+d+c)
故b=2,d=2,a=4,c=2…(4分)
(Ⅱ)令φ(x)=2mex(x+1)-x2-4x-2,
则φ'(x)=2mex(x+2)-2x-4=2(x+2)(mex-1)
因φ(0)≥0,则m≥1
令φ'(x)=0得x1=-lnm,x2=-2…(6分)
(1)若1≤m<e2,则-2<x1≤0,从而x∈(-2,x1)时φ'(x)<0;当x∈(x1,+∞)时φ'(x)>0,即φ(x)在 (-2,x1)单调递减,在(x1,+∞)单调递增,故φ(x)在[-2,+∞)的最小值φ(x1),φ(x1)=2mex1(x1+1)?
?4x1?4=2x1+2?
?4x1?2=?
?2x1=?x1(x1+2)≥0
故当x≥-2时φ(x)≥0,即mg(x)≥f'(x)+2恒成立. …(8分)
(2)若m=e2,则φ'(x)=2e2(x+2)(ex-e-2),从而当x≥-2时φ'(x)≥0,即φ(x)在[-2,+∞)单调递增,而φ(-2)=0,故当x≥-2时φ(x)≥0,即mg(x)≥f'(x)+2恒成立.
(3)若m>e2,则φ(-2)=-2me-2+2=-2e-2(m-e2)<0,从而当x≥-2时,mg(x)≥f'(x)+2不可能恒成立. …(11分)
综上:m的取值范围是[1,e2]…(12分)
而f'(x)=x2+4x+a,g'(x)=ex(cx+d+c)
故b=2,d=2,a=4,c=2…(4分)
(Ⅱ)令φ(x)=2mex(x+1)-x2-4x-2,
则φ'(x)=2mex(x+2)-2x-4=2(x+2)(mex-1)
因φ(0)≥0,则m≥1
令φ'(x)=0得x1=-lnm,x2=-2…(6分)
(1)若1≤m<e2,则-2<x1≤0,从而x∈(-2,x1)时φ'(x)<0;当x∈(x1,+∞)时φ'(x)>0,即φ(x)在 (-2,x1)单调递减,在(x1,+∞)单调递增,故φ(x)在[-2,+∞)的最小值φ(x1),φ(x1)=2mex1(x1+1)?
x | 2 1 |
x | 2 1 |
x | 2 1 |
故当x≥-2时φ(x)≥0,即mg(x)≥f'(x)+2恒成立. …(8分)
(2)若m=e2,则φ'(x)=2e2(x+2)(ex-e-2),从而当x≥-2时φ'(x)≥0,即φ(x)在[-2,+∞)单调递增,而φ(-2)=0,故当x≥-2时φ(x)≥0,即mg(x)≥f'(x)+2恒成立.
(3)若m>e2,则φ(-2)=-2me-2+2=-2e-2(m-e2)<0,从而当x≥-2时,mg(x)≥f'(x)+2不可能恒成立. …(11分)
综上:m的取值范围是[1,e2]…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询