一道大学数学求极限题目
1个回答
展开全部
cos(x/2)cos(x/4)...cos(x/2^(n-1))cos(x/2^n)
= cos(x/2)cos(x/4)...cos(x/2^(n-1))cos(x/2^n)sin(x/2^n)/sin(x/2^n)
= cos(x/2)cos(x/4)...cos(x/2^(n-1))sin(x/2^(n-1))/(2sin(x/2^n))
= cos(x/2)cos(x/4)...sin(x/2^(n-2))/(4sin(x/2^n))
...
= cos(x/2)sin(x/2)/(2^(n-1)·sin(x/2^n))
= sin(x)/(2^n·sin(x/2^n))
= sin(x)/(x·sin(x/2^n)/(x/2^n)).
n → ∞时, x/2^n → 0, 从而sin(x/2^n)/(x/2^n) → 1.
因此所求极限为sin(x)/x.
= cos(x/2)cos(x/4)...cos(x/2^(n-1))cos(x/2^n)sin(x/2^n)/sin(x/2^n)
= cos(x/2)cos(x/4)...cos(x/2^(n-1))sin(x/2^(n-1))/(2sin(x/2^n))
= cos(x/2)cos(x/4)...sin(x/2^(n-2))/(4sin(x/2^n))
...
= cos(x/2)sin(x/2)/(2^(n-1)·sin(x/2^n))
= sin(x)/(2^n·sin(x/2^n))
= sin(x)/(x·sin(x/2^n)/(x/2^n)).
n → ∞时, x/2^n → 0, 从而sin(x/2^n)/(x/2^n) → 1.
因此所求极限为sin(x)/x.
更多追问追答
追问
能帮我看看我提问的一道行列式的问题吗,万分感谢!!
追答
请给下问题链接或者完整标题, 我搜一下(用户名没法搜).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询