初三数学题,求解答

柠檬Sherrill
2014-11-18
知道答主
回答量:2
采纳率:0%
帮助的人:2.3万
展开全部

(1)证明:①∵四边形ABCD是矩形,

∴AD∥BC,

∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足为O,

∴OA=OC,

∴△AOE≌△COF,

∴OE=OF,

∴四边形AFCE为平行四边形,

又∵EF⊥AC,

∴四边形AFCE为菱形,

②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,

在Rt△ABF中,AB=4cm,

由勾股定理得42+(8﹣x)2=x2,

解得x=5,

∴AF=5cm.

 

(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;

同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.

因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,

∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,

∴PC=5t,QA=12﹣4t,

∴5t=12﹣4t,

解得,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,秒.

 

②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.

分三种情况:

i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;

ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;

iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.

综上所述,a与b满足的数量关系式是a+b=12(ab≠0).

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式