已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列.(Ⅰ)求a2,a3;(Ⅱ)证明数列{an

已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列.(Ⅰ)求a2,a3;(Ⅱ)证明数列{an-2}为等比数列;(Ⅲ)判断是否存在λ(λ∈Z... 已知数列{an}的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列.(Ⅰ)求a2,a3;(Ⅱ)证明数列{an-2}为等比数列;(Ⅲ)判断是否存在λ(λ∈Z),使不等式Sn-n+1≥λan对任意的n∈N*成立,若存在,求出λ的最大值;若不存在,请说明理由. 展开
 我来答
丰安青00i
推荐于2016-03-28 · TA获得超过163个赞
知道答主
回答量:151
采纳率:100%
帮助的人:75.1万
展开全部
(Ⅰ)解:∵数列{an+Sn}是公差为2的等差数列,∴(an+1+Sn+1)-(an+Sn)=2,
an+1
an+2
2
,(2分)∵a1=1,∴a2
3
2
 a3
7
4
;(4分)
(Ⅱ)证明:由题意,得a1-2=-1,∵
an+1?2
an?2
an+2
2
?2
an?2
1
2
,∴{an-2}是首项为-1,公比为
1
2
的等比数列;(8分)
(Ⅲ)解:由(Ⅱ)得an?2=?(
1
2
)n?1
,∴an=2?(
1
2
)n?1
,∵{an+Sn}是首项为a1+S1=2,公差为2的等差数列,∴an+Sn=2+(n-1)×2=2n,∴Sn=2n?2+(
1
2
)n?1
,(9分)
设存在整数λ,使不等式Sn-n+1≥λan对任意的n∈N*成立,
即存在整数λ,使不等式n?1+(
1
2
)n?1≥λ[2?(
1
2
)n?1]
对任意的n∈N*成立,∴当n=1时,不等式成立,解得λ≤1,(10分)
以下证明存在最大的整数λ=1,使不等式Sn-n+1≥λan对任意的n∈N*成立.
当n=2时,不等式化简为
3
2
3
2
,成立;
当n≥3时,∵(Sn?n+1)?an=n?3+(
1
2
)n?2>0
,∴(Sn-n+1)>an成立.
综上,知存在整数λ,使不等式Sn-n+1≥λan对任意的n∈N*成立,且λ的最大值为1.(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式