(1)如图①,△ABC中,AB=AC,∠BAC=90°,点D为BC边上一点(与点B、C不重合),连接AD,以AD为一边且在
(1)如图①,△ABC中,AB=AC,∠BAC=90°,点D为BC边上一点(与点B、C不重合),连接AD,以AD为一边且在AD的右侧作正方形ADEF.可猜想线段CF,BD...
(1)如图①,△ABC中,AB=AC,∠BAC=90°,点D为BC边上一点(与点B、C不重合),连接AD,以AD为一边且在AD的右侧作正方形ADEF.可猜想线段CF,BD之间的数量关系是______,位置关系是______;(2)当点D在线段BC的延长线时,如图②,(1)中的结论是否仍然成立?如果成立,给出证明,如果不成立,说明理由.
展开
1个回答
展开全部
(1)CF与BD的数量关系是:CF=BD;
位置关系是:CF⊥BD;
故答案为:相等、垂直.
(2)当点D在BC的延长线上时(1)中的结论仍成立.(5分)
理由如下:
由正方形ADEF得AD=AF,∠DAF=90°.
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,(4分)
∴CF=BD,∠ACF=∠ABD.(6分)
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
位置关系是:CF⊥BD;
故答案为:相等、垂直.
(2)当点D在BC的延长线上时(1)中的结论仍成立.(5分)
理由如下:
由正方形ADEF得AD=AF,∠DAF=90°.
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,(4分)
∴CF=BD,∠ACF=∠ABD.(6分)
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询