如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点
展开全部
(1)∵ABCD是平行四边形
∴AD=BC
OD=OB=1/2BD
∵BD=2AD,AD=1/2BD
∴AD=OD=OB=BC
∴△BOC是等腰三角形
∵E是OC的中点,即BE是等腰三角形BOC底边上的中线
∴BE就是等腰三角形BOC底边上的高,即BE⊥AC
(2)∵G是AB边的中点,即是Rt△ABE斜边上的中线
∴EG=1/2AB
∵E,F分别是OC,OD的中点,即EF是△ODF的中位线
∴EF=1/2CD
∵ABCD是平行四边形
∴AB=CD
∴EG=EF
∴AD=BC
OD=OB=1/2BD
∵BD=2AD,AD=1/2BD
∴AD=OD=OB=BC
∴△BOC是等腰三角形
∵E是OC的中点,即BE是等腰三角形BOC底边上的中线
∴BE就是等腰三角形BOC底边上的高,即BE⊥AC
(2)∵G是AB边的中点,即是Rt△ABE斜边上的中线
∴EG=1/2AB
∵E,F分别是OC,OD的中点,即EF是△ODF的中位线
∴EF=1/2CD
∵ABCD是平行四边形
∴AB=CD
∴EG=EF
展开全部
连接OG
∵ABCD是平行四边形
∴AD=BC
OD=OB=1/2BD
∵BD=2AD,AD=1/2BD
∴AD=OD=OB=BC
∴△BOC是等腰三角形
∴∠ACB=∠COB
∵G是AB的中点,F是OD的中点,O是BD的中点
∴OG是△ABC的中位线即OG=1/2BC=1/2AD
且OG∥BC
OF=1/2OD=1/2AD
∴OF=OG
∠AOG=∠ACB
∴∠FOE=180°-∠COB=180°-∠ACB
∠EOG=180°-∠AOG=180°-∠ACB
∴∠FOE=∠EOG
在△EOF和△EOG中
OF=OG
OE=OE
∠FOE=∠EOG
∴△EOF≌△EOG
∴EF=EG
∵ABCD是平行四边形
∴AD=BC
OD=OB=1/2BD
∵BD=2AD,AD=1/2BD
∴AD=OD=OB=BC
∴△BOC是等腰三角形
∴∠ACB=∠COB
∵G是AB的中点,F是OD的中点,O是BD的中点
∴OG是△ABC的中位线即OG=1/2BC=1/2AD
且OG∥BC
OF=1/2OD=1/2AD
∴OF=OG
∠AOG=∠ACB
∴∠FOE=180°-∠COB=180°-∠ACB
∠EOG=180°-∠AOG=180°-∠ACB
∴∠FOE=∠EOG
在△EOF和△EOG中
OF=OG
OE=OE
∠FOE=∠EOG
∴△EOF≌△EOG
∴EF=EG
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询