在等差数列an中,若S9=18,Sn=240,an-4=30,则n的值为多少
1个回答
展开全部
设首项a,公差d.
(a+a+8d)*9/2=18
[a+a+(n-1)d]*n/2=240
a+(n-5)d=30
硬解之,可得a=-50/3,d=14/3,n=15.
也有一种更好的方法:
(a+a+8d)*9/2=18→a+4d=2
a+(n-5)d=30
两式相加,可得2a+nd-d=32
对比[a+a+(n-1)d]*n/2=240→(2a+nd-d)*n=480
相除即得n=480/32=15
注:事实上S9=18也就是a5=18/9=2
(a+a+8d)*9/2=18
[a+a+(n-1)d]*n/2=240
a+(n-5)d=30
硬解之,可得a=-50/3,d=14/3,n=15.
也有一种更好的方法:
(a+a+8d)*9/2=18→a+4d=2
a+(n-5)d=30
两式相加,可得2a+nd-d=32
对比[a+a+(n-1)d]*n/2=240→(2a+nd-d)*n=480
相除即得n=480/32=15
注:事实上S9=18也就是a5=18/9=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询