已知a>0,b>0,则1/a+1/b+2根号ab的最小值是多少
1个回答
展开全部
原题是:已知a>0,b>0,则(1/a)+(1/b)+2√(ab)的最小值是多少?
a>0,b>0时
(1/a)+(1/b)+2√(ab)
≥(2√((1/a)(1/b)))+2√(ab) (a=b时取“=”)
=2[(1/√(ab))+√(ab)]
≥2*2√(1/√(ab))(√(ab)) (ab=1时取“=”)
=4
即(1/a)+(1/b)+2√(ab)≥4 且a=b=1时取“=”
所以(1/a)+(1/b)+2√(ab)的最小值是4.
希望能帮到你!
a>0,b>0时
(1/a)+(1/b)+2√(ab)
≥(2√((1/a)(1/b)))+2√(ab) (a=b时取“=”)
=2[(1/√(ab))+√(ab)]
≥2*2√(1/√(ab))(√(ab)) (ab=1时取“=”)
=4
即(1/a)+(1/b)+2√(ab)≥4 且a=b=1时取“=”
所以(1/a)+(1/b)+2√(ab)的最小值是4.
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询