空间曲线的切线和法平面怎么求

 我来答
123杨大大
2018-08-19 · TA获得超过1.7万个赞
知道答主
回答量:39
采纳率:100%
帮助的人:2.2万
展开全部

以题目为例,具体步骤如下:

1、以 求如下曲线在点(1.1.1)的点的切线及法平面为例,首先我们观察这个曲线的表达式,我们可以看做是两个曲面的交线,这种表达形式称为曲线的一般方程,也称为交面式曲线方程。

2、观察:首先观察曲面的第一个式子,它是一个球面的表达式,而第二个式子是一个空间平面的标准表达式,而点(1.1.1)是这两个平面上的点。

3、先分别求两平面在该点的法向量;我们可以先把曲面的标准方程转化成隐形方程,即分别转化成F(x^2-3x,y^2,z^2),G(2x,-3y,5z)的形式,那么它们各自的法向量就是图片中的形式。

4、那么知道了它们各自在(1.1.1)的法向量如何求曲线的方向向量呢?实际上曲面的方向向量之积就是我们所要求的切线的方向向量,既是图片所显示的运算结果。

5、从而求出曲线在(1.1.1)的切线方程的点向式方程。当我们知道点向式方程之后,我们很容易就能求出法平面方程,就是图片中的形式,记得一定要化为最简形式,这种表达形式是曲面的一般方程形式。

拓展资料

(1)P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)。

(2)说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。

(资料来源:百度百科:切线

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
默nbhg阴
2018-08-06 · TA获得超过1.3万个赞
知道答主
回答量:110
采纳率:100%
帮助的人:1.6万
展开全部

根据空间曲线的表达形式,有以下两种求法:

1.参数曲线形式:分别求x,y,z对参数t的倒数,将该点的值带入,就得到该点的切向量,根据点向式和点法式写出切线和法平面;

2.两平面交线的形式:根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面。

以一个题目来举例子,如下:

1.以求如下曲线在点(1.1.1)的点的切线及法平面为例,首先我们观察这个曲线的表达式,我们可以看做是两个曲面的交线,这种表达形式称为曲线的一般方程,也称为交面式曲线方程。

2.观察:首先观察曲面的第一个式子,它是一个球面的表达式,而第二个式子是一个空间平面的标准表达式,而点(1.1.1)是这两个平面上的点。

3.先分别求两平面在该点的法向量;我们可以先把曲面的标准方程转化成隐形方程,即分别转化成F(x^2-3x,y^2,z^2),G(2x,-3y,5z)的形式,那么它们各自的法向量就是图片中的形式。

4.那么知道了它们各自在(1.1.1)的法向量如何求曲线的方向向量呢?实际上曲面的方向向量之积就是我们所要求的切线的方向向量,既是图片所显示的运算结果。

5.从而求出曲线在(1.1.1)的切线方程的点向式方程。如图所示

6.当我们知道点向式方程之后,我们很容易就能求出法平面方程,就是图片中的形式,记得一定要化为最简形式,这种表达形式是曲面的一般方程形式。

扩展资料:

空间曲线(space curves)是经典微分几何的主要研究对象之一,在直观上曲线可看成空间一个自由度的质点运动的轨迹。在三维欧氏空间R3的直角坐标系中,点的运动可表示为x=x(t),y=y(t),z=z(t),其中t为参数,这个点运动的轨迹就是满足上述方程的点的集合。

空间曲线就是R3中的一个点集,这个点集可由上述参数方程来表示。空间曲线可定义为:数轴上的区间((a,b)到R3中的一一连续的映射r: (a,b)}R3:t}{x(t),y(t),z(t) } ,tE <a,b),也把该映射的像称为曲线.在R'的直角坐标系中,这个映射可表示为x=x(t),y=y(t),z=z(t), a}t}b,此方程称为曲线的参数方程,t为参数.若;为曲线上点的向径,则此参数方程也可写为向量函数的形式:;一;(t>一{x(t),y(t),z(t)}, tE (a,b),曲线的方向依参数增加的方向确定正向。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hf7022129
2015-06-11 · TA获得超过947个赞
知道小有建树答主
回答量:206
采纳率:100%
帮助的人:206万
展开全部
这个比较复杂了,根据空间曲线的表达形式,一般有两种方法:
1)如果为参数曲线形式,就比较简单了,分别求x,y,z对参数t的倒数,将该点的值带入,就得到该点的切向量,根据点向式和点法式写出切线和法平面。
2)如果为两平面交线的形式,就稍微复杂一点,需要根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
努力妥妥大洋子
2019-07-11
知道答主
回答量:16
采纳率:0%
帮助的人:8672
展开全部

高等数学切线及法平面方程的讲解视频

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式