非齐次线性方程组有唯一解怎么求
9个回答
展开全部
Ax=0无非零解时.则A为满秩矩阵。则Ax=b一定有解
Ax=0有无穷多解时,则A一定不为满秩矩阵,
Ax=b的解得情况有无解和无穷多解
无解:R(A)≠R(A|b)
无穷解:R(A)等于R(A|b)。且不为满秩
Ax=b无解时,可知Ax=0一定有无穷多解
Ax=b有唯一解时,可知A为满秩矩阵,则Ax=0只有零解
齐次线性方程组,要么零解(R(A)=n),要么无穷解(R(A)<n)
一个零解,一个非零的唯一解.不能同时发生。
扩展资料:
解的存在性
非齐次线性方程组Ax=b 有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
参考资料来源:百度百科-非齐次线性方程组
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
非齐次线性方程组Ax=b的求解方法: 1、对增广矩阵作初等行变换,化为阶梯形矩阵; 2、求出导出组Ax=0的一个基础解系; 3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0) 4、按解的结构 ξ(特解)+k1a1+k2a...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
线性代数相关知识。求矩阵的秩,系数矩阵的秩等于增广矩阵的秩时,非齐次线性方程有唯一解;当系数矩阵的秩小于增广矩阵的秩时,无解;当系数矩阵的秩大于增广矩阵的秩的时候,无穷解。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把增广矩阵左部分(也就是系数矩阵化成行最简)得到右边一列就是唯一解(实际上就是令自由变量为0),解析:比如第一行为(1 0 0 0 a)也就是(X1乘1等于a)那X1就等于a,第二行是X2,类推。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用克拉默法则,可以分别得到x1,x2,x3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询