求极限,要步骤,在线等
展开全部
(1)
lim(x->0) (tanx - sinx)/ln(1+x^2) (0/0)
=lim(x->0) [(secx)^2 - cosx]/[2x/(1+x^2)]
=lim(x->0) (1+x^2) [(secx)^2 - cosx]/(2x) (0/0)
=lim(x->0) {(1+x^2) [2(secx)^2.tanx + sinx] +2x[(secx)^2 - cosx] }/2
=0
(2)
lim(x->0) sin(x^n)/(sinx)^m
case 1: n=m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
=1
case 2: n>m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
=lim(x->0)x^(n-m)
=0
case 3: n<m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
->∞
lim(x->0) (tanx - sinx)/ln(1+x^2) (0/0)
=lim(x->0) [(secx)^2 - cosx]/[2x/(1+x^2)]
=lim(x->0) (1+x^2) [(secx)^2 - cosx]/(2x) (0/0)
=lim(x->0) {(1+x^2) [2(secx)^2.tanx + sinx] +2x[(secx)^2 - cosx] }/2
=0
(2)
lim(x->0) sin(x^n)/(sinx)^m
case 1: n=m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
=1
case 2: n>m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
=lim(x->0)x^(n-m)
=0
case 3: n<m
lim(x->0) sin(x^n)/(sinx)^m
=lim(x->0)x^n/x^m
->∞
追问
亲,你第一题答案错了,是二分之一,还有,你好像有一道题没做
追答
(1)
lim(x->0) (tanx - sinx)/ln(1+x^2) (0/0)
=lim(x->0) [(secx)^2 - cosx]/[2x/(1+x^2)]
=lim(x->0) (1+x^2) [(secx)^2 - cosx]/(2x) (0/0)
=lim(x->0) {(1+x^2) [2(secx)^2.tanx + sinx] +2x[(secx)^2 - cosx] }/2
=0
没有错
lim(x->π/2) (1+cotx)^(2tanx)
let
1/y = cotx
x->π/2 , y->∞
lim(x->π/2) (1+cotx)^(2tanx)
=lim(y->∞) (1+1/y)^(2y)
=e^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询