一道复变函数题
展开全部
定义 若f(z)在z0点的某一个邻域u(z0)内处处可导,则称f(z)在z0点解析,并称z0是f(z)的解析点.
由定义可以推出:若函数f(z)在z0点解析,则一定存在一个邻域u(z0),在
u(z0)内任意一点z1处f(z)解析,事实上z1是u(z0)的内点,因而存在邻域
u(z1)包含于u(z0),使(f(z)在u(z1)内处处可导,于是按定义f(z)在z1点解析.
复变函数f(x+yi)=u(x,y)+v(x,y)i可导的充要条件是:
∂u/∂x,∂u/∂y,∂v/∂x,∂v/∂y存在,且连续,且满足柯西-黎曼方程
∂u/∂x=∂v/∂y,,∂v/∂x=-,∂u/∂y
设z=x+yi
cosz=(e^iz+e^-iz)/2=(e^(xi-y)+e^(-xi+y))/2
=[e^-y(cosx+isinx)+e^y(cosx-isinx)]/2
e^z=e^x(cosy+isiny)
代入:
f(x+yi)=(x+yi)/[(1+(x+yi)²]+2e^z(e^iz+e^-iz)/2
=(x+yi)/(1+x²-y²+2xyi)+e^x(cosy+isiny)[e^-y(cosx+isinx)+e^y(cosx-isinx)]
=(x+yi)(1+x²-y²-2xyi)/[(1+x²-y²)²+4x²y²]+e^xe^-y(cosy+isiny)(cosx+isinx)+e^xe^y(cosy+isiny)(cosx-isinx)
=[(x+x³+xy²)+(y-x²y-y³)i]/[1+x^4+y^4+2x²-2y²+2x²y²]+e^(x-y)[(cosxcosy-sinxsiny)+(sinxcosy+cosxsiny)i]+e^(x+y)[(cosxcosy+sinxsiny)+(sinycosx-cosysinx)i]
=[(x+x³+xy²)+(y-x²y-y³)i]/[1+x^4+y^4+2x²-2y²+2x²y²]+e^(x-y)[cos(x+y)+sin(x+y)i]+e^(x+y)[cos(x-y)+sin(y-x)i]
=[(x+x³+xy²)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)cos(x+y)+e^(x+y)cos(x-y)]
+[(y-x²y-y³)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)sin(x+y)+e^(x+y)sin(y-x)]i
u=(x+x³+xy²)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)cos(x+y)+e^(x+y)cos(x-y)
v=(y-x²y-y³)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)sin(x+y)+e^(x+y)sin(y-x)
u、v的间断点:1+x^4+y^4+2x²-2y²+2x²y²=0
x^4+(2+2y²)x²+(y^4-2y²+1)=0
x^4+2(1+y²)x²+(y²-1)²=0
x=0,y²=1,y=±1,(0,1),(0,-1)两个点就就间断点。
∂u/∂x=[(1+3x²+y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(x+x³+xy²)(4x³+4x+4xy²)]/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
=[1+x^4+y^4+2x²-2y²+2x²y²+3x²+3x^6+3x²y^4+6x^4-6x²y²+6x^4y²+y²+x^4y²+y^6+2x²y²-2y^4+2x²y^4-4x^4-4x²-4x²y²-4x^6-4x^4-4x^4y²-4x^4y²-4x²y²-4x²y^4)]/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
=(1-x^4-y^4+x²-y²-10x²y²+x²y^4-x^4y²+y^6-x^6)/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
∂v/∂y=[(1-x²-3y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(y-x²y-y³)(4y³-4y+4x²y)]/(1+x^4+y^4+2x²-2y²+2x²y²)²-e^(x-y)sin(x+y)+e^(x-y)cos(x+y)+e^(x+y)sin(y-x)+e^(x+y)cos(y-x)
后面各项相等,只要考虑第一项的分子即可:分子=
(1-x²-3y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(y-x²y-y³)(4y³-4y+4x²y)
=1+x^4+y^4+2x²-2y²+2x²y²-x²-x^6-x²y^4-2x^4+2x²y²-2x^4y²-3y²-3x^4y²-3y^6-6x²y²+6y^4-6x²y^4-4y^4+4y²-4x²y²+4x²y^4-4x²y²+4x^4y²+4y^6-4y^4+4x²y^4
=1-x^4-y^4+x²-y²-10x²y²-x^6-x^4y²+y^6+x²y^4
∂u/∂x=∂v/∂y
同理求其他偏导数,
.....................
其实,对于原来就是用复数变量z定义的函数,柯西-黎曼条件总是满足的,(直接随意定义的u,v就不一定了),只要f'(z)有定义即可,形式上与实变数函数求导一样。
f'(z)=1/(1+z²)-2z²/(1+z²)²+2(e^z)cosz-2(e^z)sinz
z=±i时,f'(z)不存在,其他的点,都是可以解析的。
由定义可以推出:若函数f(z)在z0点解析,则一定存在一个邻域u(z0),在
u(z0)内任意一点z1处f(z)解析,事实上z1是u(z0)的内点,因而存在邻域
u(z1)包含于u(z0),使(f(z)在u(z1)内处处可导,于是按定义f(z)在z1点解析.
复变函数f(x+yi)=u(x,y)+v(x,y)i可导的充要条件是:
∂u/∂x,∂u/∂y,∂v/∂x,∂v/∂y存在,且连续,且满足柯西-黎曼方程
∂u/∂x=∂v/∂y,,∂v/∂x=-,∂u/∂y
设z=x+yi
cosz=(e^iz+e^-iz)/2=(e^(xi-y)+e^(-xi+y))/2
=[e^-y(cosx+isinx)+e^y(cosx-isinx)]/2
e^z=e^x(cosy+isiny)
代入:
f(x+yi)=(x+yi)/[(1+(x+yi)²]+2e^z(e^iz+e^-iz)/2
=(x+yi)/(1+x²-y²+2xyi)+e^x(cosy+isiny)[e^-y(cosx+isinx)+e^y(cosx-isinx)]
=(x+yi)(1+x²-y²-2xyi)/[(1+x²-y²)²+4x²y²]+e^xe^-y(cosy+isiny)(cosx+isinx)+e^xe^y(cosy+isiny)(cosx-isinx)
=[(x+x³+xy²)+(y-x²y-y³)i]/[1+x^4+y^4+2x²-2y²+2x²y²]+e^(x-y)[(cosxcosy-sinxsiny)+(sinxcosy+cosxsiny)i]+e^(x+y)[(cosxcosy+sinxsiny)+(sinycosx-cosysinx)i]
=[(x+x³+xy²)+(y-x²y-y³)i]/[1+x^4+y^4+2x²-2y²+2x²y²]+e^(x-y)[cos(x+y)+sin(x+y)i]+e^(x+y)[cos(x-y)+sin(y-x)i]
=[(x+x³+xy²)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)cos(x+y)+e^(x+y)cos(x-y)]
+[(y-x²y-y³)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)sin(x+y)+e^(x+y)sin(y-x)]i
u=(x+x³+xy²)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)cos(x+y)+e^(x+y)cos(x-y)
v=(y-x²y-y³)/(1+x^4+y^4+2x²-2y²+2x²y²)+e^(x-y)sin(x+y)+e^(x+y)sin(y-x)
u、v的间断点:1+x^4+y^4+2x²-2y²+2x²y²=0
x^4+(2+2y²)x²+(y^4-2y²+1)=0
x^4+2(1+y²)x²+(y²-1)²=0
x=0,y²=1,y=±1,(0,1),(0,-1)两个点就就间断点。
∂u/∂x=[(1+3x²+y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(x+x³+xy²)(4x³+4x+4xy²)]/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
=[1+x^4+y^4+2x²-2y²+2x²y²+3x²+3x^6+3x²y^4+6x^4-6x²y²+6x^4y²+y²+x^4y²+y^6+2x²y²-2y^4+2x²y^4-4x^4-4x²-4x²y²-4x^6-4x^4-4x^4y²-4x^4y²-4x²y²-4x²y^4)]/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
=(1-x^4-y^4+x²-y²-10x²y²+x²y^4-x^4y²+y^6-x^6)/(1+x^4+y^4+2x²-2y²+2x²y²)²+e^(x-y)cos(x+y)-e^(x-y)sin(x+y)+e^(x+y)cos(x-y)-e^(x+y)sin(x-y)
∂v/∂y=[(1-x²-3y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(y-x²y-y³)(4y³-4y+4x²y)]/(1+x^4+y^4+2x²-2y²+2x²y²)²-e^(x-y)sin(x+y)+e^(x-y)cos(x+y)+e^(x+y)sin(y-x)+e^(x+y)cos(y-x)
后面各项相等,只要考虑第一项的分子即可:分子=
(1-x²-3y²)(1+x^4+y^4+2x²-2y²+2x²y²)-(y-x²y-y³)(4y³-4y+4x²y)
=1+x^4+y^4+2x²-2y²+2x²y²-x²-x^6-x²y^4-2x^4+2x²y²-2x^4y²-3y²-3x^4y²-3y^6-6x²y²+6y^4-6x²y^4-4y^4+4y²-4x²y²+4x²y^4-4x²y²+4x^4y²+4y^6-4y^4+4x²y^4
=1-x^4-y^4+x²-y²-10x²y²-x^6-x^4y²+y^6+x²y^4
∂u/∂x=∂v/∂y
同理求其他偏导数,
.....................
其实,对于原来就是用复数变量z定义的函数,柯西-黎曼条件总是满足的,(直接随意定义的u,v就不一定了),只要f'(z)有定义即可,形式上与实变数函数求导一样。
f'(z)=1/(1+z²)-2z²/(1+z²)²+2(e^z)cosz-2(e^z)sinz
z=±i时,f'(z)不存在,其他的点,都是可以解析的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询