1×2的平方加上2×3的平方加上3×4的平方一直加到19×20的平方怎么算
6个回答
展开全部
这道题可以运用错位相减法,
an
= n(n+1)^2
= n(n+1)(n+2) - n(n+1)
= (1/4)[ n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2) ] -(1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ]
Sn
=a1+a2+...+an
=(1/4)n(n+1)(n+2)(n+3) - (1/3)n(n+1)(n+2)
=(1/12)n(n+1)(n+2)(3n+5)
1x2^2+2x3^2+...+19x20^2
=S19
=(1/12)(19)(20)(21)(62)
=41230
希望对你有帮助,望采纳谢谢
an
= n(n+1)^2
= n(n+1)(n+2) - n(n+1)
= (1/4)[ n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2) ] -(1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ]
Sn
=a1+a2+...+an
=(1/4)n(n+1)(n+2)(n+3) - (1/3)n(n+1)(n+2)
=(1/12)n(n+1)(n+2)(3n+5)
1x2^2+2x3^2+...+19x20^2
=S19
=(1/12)(19)(20)(21)(62)
=41230
希望对你有帮助,望采纳谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an
= n(n+1)^2
= n(n+1)(n+2) - n(n+1)
= (1/4)[ n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2) ] -(1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ]
Sn
=a1+a2+...+an
=(1/4)n(n+1)(n+2)(n+3) - (1/3)n(n+1)(n+2)
=(1/12)n(n+1)(n+2)(3n+5)
1x2^2+2x3^2+...+19x20^2
=S19
=(1/12)(19)(20)(21)(62)
=41230
= n(n+1)^2
= n(n+1)(n+2) - n(n+1)
= (1/4)[ n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2) ] -(1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ]
Sn
=a1+a2+...+an
=(1/4)n(n+1)(n+2)(n+3) - (1/3)n(n+1)(n+2)
=(1/12)n(n+1)(n+2)(3n+5)
1x2^2+2x3^2+...+19x20^2
=S19
=(1/12)(19)(20)(21)(62)
=41230
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Sn=2³+3³+……(n+1)³-(2²+3²+……(n+1)²)
=1³+2³+3³+……(n+1)³-(1²+2²+3²+……(n+1)²)
=((n+2)(n+1)/2)²-(n+1)(n+2)(2n+3)/6
S19=41230
=1³+2³+3³+……(n+1)³-(1²+2²+3²+……(n+1)²)
=((n+2)(n+1)/2)²-(n+1)(n+2)(2n+3)/6
S19=41230
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询