求定积分,有步骤谢谢 30
1个回答
展开全部
思路:
令x=tant
dx=sec²tdt
x=1,t=π/4
x=√3,t=π/3
所以
原式=∫(π/4,π/3)sec²t/[tan²t ·sect] dt
=∫(π/4,π/3)sect/[tan²t ] dt
=∫(π/4,π/3)(1/cost)/[(sint/cost)² ] dt
=∫(π/4,π/3)cost/sin²t dt
=∫(π/4,π/3)1/sin²t dsint
=-1/sint |(π/4,π/3)
=-1/(√3/2)+1/(√2/2)
=-2√3/3 +√2
令x=tant
dx=sec²tdt
x=1,t=π/4
x=√3,t=π/3
所以
原式=∫(π/4,π/3)sec²t/[tan²t ·sect] dt
=∫(π/4,π/3)sect/[tan²t ] dt
=∫(π/4,π/3)(1/cost)/[(sint/cost)² ] dt
=∫(π/4,π/3)cost/sin²t dt
=∫(π/4,π/3)1/sin²t dsint
=-1/sint |(π/4,π/3)
=-1/(√3/2)+1/(√2/2)
=-2√3/3 +√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询