如图求解要过程,谢谢
1个回答
展开全部
证明:连接AC ,分别过点D ,C作DG平行AC交FH于M CN平行AB交FH于N
所以DM/AO=DH/AH
角EDM=角ECO
角EMD=角ECO
CN/BF=CG/BG
角OCN=角OAF
角ONC=角OFA
所以三角形OCN和三角形OAF相似(AA)
所以CN/AF=OC/AO
因为F是AB的中点
所以AF=BF
所以CG/BG=CN/BF=OC/AO
因为E是CD的中点
所以DE=CE
所以三角形DME和三角形COE全等(AAS)
所以DM/OC
所以DH/AH=OC/AO
所以DG/AH=CG/BG
所以AH/DH=BG/CG
所以DM/AO=DH/AH
角EDM=角ECO
角EMD=角ECO
CN/BF=CG/BG
角OCN=角OAF
角ONC=角OFA
所以三角形OCN和三角形OAF相似(AA)
所以CN/AF=OC/AO
因为F是AB的中点
所以AF=BF
所以CG/BG=CN/BF=OC/AO
因为E是CD的中点
所以DE=CE
所以三角形DME和三角形COE全等(AAS)
所以DM/OC
所以DH/AH=OC/AO
所以DG/AH=CG/BG
所以AH/DH=BG/CG
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询