求极限 :lim(n→∞) (2n+1)/√(n²+2n)

 我来答
花降如雪秋风锤
高粉答主

2019-12-15 · 甘于平凡,却不甘于平凡地溃败。
花降如雪秋风锤
采纳数:276 获赞数:83279

向TA提问 私信TA
展开全部

将分式的平方后可得

(2n+1)^2/(n^2+2n)

=(4n^2+8n+1)/(n^2+2n)

= (4+8/n+1/n^2)/(1+2/n)

当n趋近正无穷时,1/n=0,1/n^2=0,所以平方后的极限值等于4。

因为n为趋近正无穷,平方前的分式的极限值等于√4=2 。

扩展资料:

函数极限的计算方法:

1、利用函数连续性:

(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)

2、恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小

4、采用洛必达法则求极限

洛必达法则是分式求极限的一种很好的方法,当遇到分式∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

晴晴知识加油站
高能答主

2019-12-13 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661285

向TA提问 私信TA
展开全部

解原式=lim(-x²)*ln[(x²+x+1)/(x²-x+1)]

=-lim{ln[(x²+x+1)/(x²-x+1)]/(1/x²)}

=lim{[(2x+1)/(x²+x+1)-(2x-1)/(x²-x+1)]/(2/x^3)}

=-lim{(3x²+1)*x^3/[(x²+x+1)*(x²-x+1)]}

=lim[(n²+n+1)/(n²-n+1)]^(-n²)

=e^(-∝)

=0

扩展资料

性质:

设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。

如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥ε,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。

N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xuzhouliuying
高粉答主

2016-10-09 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解:
lim (2n+1)/√(n²+2n)
n→∞
=lim (2+ 1/n)/√(1+ 2/n²)
n→∞
=(2+0)/√(1+0)
=2/1
=2
更多追问追答
追问
请问√(1+2/n²)是怎么来的?
追答
分子分母同除以n
本题是极限最基础的题目,通过分子分母同除以n,分子、分母上分别得到常数+无穷小的形式。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式