扇形的面积计算公式
扇形面积=底圆半径的平方×圆周率×圆心角度数÷360
S=nπr²÷360 π是圆周率,r是底圆的半径,n是圆心角的度数。
R是扇形半径,n是弧所对圆心角度数,π是圆周率,也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n
S=nπR^2/360
S=1/2LR (L为弧长,R为半径)
S=1/2|α|r平方
拓展资料:
扇形周长公式
因为扇形周长=半径×2+弧长
若半径为r,直径为d,扇形所对的圆心角的度数为n°,那么扇形周长:
C=2r+(n÷360)πd=2r+(n÷180)πr
扇形的弧长公式
角度制计算
l=n÷360×2πr=nπr÷180, l是弧长,n是扇形圆心角,π是圆周率,r是底圆半径。
弧度制计算
l=|α|×r ,l是弧长,|α|是弧l所对的圆心角的弧度数的绝对值,r是底圆半径。
扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为πr²/360º×nº。如果其顶角采用弧度单位,则可简化为半径乘弧长乘1/2弧长=半径×弧度)
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×半径,与三角形面积:1/2×底×高相似。
扇形面积公式:S=IR/2
S扇=(lR)/2 (l为扇形弧长) =(1/2)θR²(θ为以弧度表示的圆心角)
S扇=(n/360)πR²
s扇=1/2lr(当知道弧长时)
(n为圆心角的度数,R为扇形的半径)
注:π为圆周率约等于3.1415926535 一般取3.14
扩展资料:
一、公式推导过程
因为圆形为360度,扇形就是N度角的圆形,所以:
1、n度圆形(扇形)面积为:nxπr²/360
2、n度圆形(扇形)所对应的弧长为:L=nx2πr/360,所以,n=360L/2πr,带入1表达式中,360L/2πrxπr²/360=LR/2
即扇形面积为S=IR/2
二、扇形的组成部分
1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。
2、以圆心为中心点的角叫做“圆心角”。
3、有一种统计图就是“扇形统计图"。
参考资料来源:百度百科-扇形面积
参考资料来源:百度百科-扇形
1、弧长公式
角度制计算
弧度制计算
所对的圆心角的弧度数的绝对值,R是扇形半径。
2、面积公式
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
推导过程:S=πR²×L/2πR=LR/2
扩展资料:
扇形(符号:⌔),是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。在右图中,θ是扇形的角弧度,r是圆的半径,L是小扇形的弧长。
圆弧为180°的扇形称为半圆。其他圆弧角的扇形有时给予其特别的名字,其中包括象限角(90°)、六分角(60°)以及八分角(45°),它们分别是整圆的1/4、1/6、1/8。
组成部分
1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。
2、以圆心为中心点的角叫做“圆心角”。
3、有一种统计图就是“扇形统计图"。
参考资料:百度百科-扇形
S=nπR^2÷360
扇形还有另一个面积公式
S=1/2lR
其中l为弧长,R为半径
本来S=nπR^2÷360
按弧度制.2π=360度.因为n的单位为度.所以l为角度为n时所对应的弧长.即.l=n*R
所以. s=n*R*π*R/2π=1/2lR.