2个回答
展开全部
22 ⑴ 在直三棱柱ABC-A1B1C1中
∵ CA=CB=1 ∠BCA=90° ∴ AB=√ 2
又∵ AA1=2 N1是AA!的中点 ∴ AN=1
AA1⊥ AB ∴ |BN|=√ 3
⑵ BA1? CB1=(BC+CA+AA1)? (CB+BB1)=AA12-BC2=3
而|BA1|=√ 6 |CB1|=√ 5 ∴ cos BA1, CB1=(√30)/10
⑶ ∵M是A1B1的中点 ∴C1M⊥AB
又∵ C1M⊥AA1 且AB∩AA1=A ∴C1M⊥平面AA1B
而 A1B ∈平面AA1B ∴A1B⊥C1M
⑷ 如图,在平面ABC中,过C作CP⊥AB,交AB于P,连接B1P
∵CP⊥AB CP⊥AA1 ∴CP⊥平面AA1B1B
∴ ∠CB1P就是CB1与平面AA1B1B所成角的平面角
cos∠CB1P=3(√ 10)/10
∴ CB1与平面AA1B1B所成角的余弦值是3(√ 10)/10。
∵ CA=CB=1 ∠BCA=90° ∴ AB=√ 2
又∵ AA1=2 N1是AA!的中点 ∴ AN=1
AA1⊥ AB ∴ |BN|=√ 3
⑵ BA1? CB1=(BC+CA+AA1)? (CB+BB1)=AA12-BC2=3
而|BA1|=√ 6 |CB1|=√ 5 ∴ cos BA1, CB1=(√30)/10
⑶ ∵M是A1B1的中点 ∴C1M⊥AB
又∵ C1M⊥AA1 且AB∩AA1=A ∴C1M⊥平面AA1B
而 A1B ∈平面AA1B ∴A1B⊥C1M
⑷ 如图,在平面ABC中,过C作CP⊥AB,交AB于P,连接B1P
∵CP⊥AB CP⊥AA1 ∴CP⊥平面AA1B1B
∴ ∠CB1P就是CB1与平面AA1B1B所成角的平面角
cos∠CB1P=3(√ 10)/10
∴ CB1与平面AA1B1B所成角的余弦值是3(√ 10)/10。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询