求齐次线性方程组 通解

求解啊啊啊啊啊啊啊啊啊啊啊啊啊啊... 求解啊啊啊啊啊啊啊啊啊啊啊啊啊啊 展开
 我来答
zzllrr小乐
高粉答主

推荐于2017-10-21 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78792

向TA提问 私信TA
展开全部

系数矩阵化最简行

1    1    1    1    

2    3    1    1    

4    5    3    3    



第2行,第3行, 加上第1行×-2,-4

1    1    1    1    

0    1    -1    -1    

0    1    -1    -1    



第1行,第3行, 加上第2行×-1,-1

1    0    2    2    

0    1    -1    -1    

0    0    0    0    



增行增列,求基础解系

1    0    2    2    0    0    

0    1    -1    -1    0    0    

0    0    1    0    1    0    

0    0    0    1    0    1    



第1行,第2行, 加上第3行×-2,1

1    0    0    2    -2    0    

0    1    0    -1    1    0    

0    0    1    0    1    0    

0    0    0    1    0    1    



第1行,第2行, 加上第4行×-2,1

1    0    0    0    -2    -2    

0    1    0    0    1    1    

0    0    1    0    1    0    

0    0    0    1    0    1    


得到基础解系:
(-2,1,1,0)T
(-2,1,0,1)T
因此通解是
C1(-2,1,1,0)T + C2(-2,1,0,1)T    

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
创作者bbWNSwkuTQ
2020-04-25
知道答主
回答量:1
采纳率:0%
帮助的人:1万
展开全部
可以把齐次方程组的百系数矩阵看成是向量组。
求向量组的极大无关组的一般步骤:
1. 把向量组作为矩阵的列向量构成度一个矩阵;
2. 用初等行变换将该矩阵化为阶梯阵;
3.主元所在列对应的原向量组即为极大无关组。

求齐次问线性方程组通解要先求基础解系,步骤:
a. 写出齐次方程组的系数矩阵答A;
b. 将A通过初等行变换化为阶梯阵;
c. 把阶梯阵中非主元列对应的变量作为自由元(n – r 个);
d.令自由元中一个版为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。

齐次线性方程组AX= 0:
若X1,X2… ,Xn-r为基础解系,则权X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-10-21
展开全部
可以把齐次方程组的系数矩阵看成是向量组。
求向量组的极大无关组的一般步骤:
1. 把向量组作为矩阵的列向量构成一个矩阵;
2. 用初等行变换将该矩阵化为阶梯阵;
3.主元所在列对应的原向量组即为极大无关组。

求齐次线性方程组通解要先求基础解系,步骤:
a. 写出齐次方程组的系数矩阵A;
b. 将A通过初等行变换化为阶梯阵;
c. 把阶梯阵中非主元列对应的变量作为自由元(n – r 个);
d.令自由元中一个为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。

齐次线性方程组AX= 0:
若X1,X2… ,Xn-r为基础解系,则X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式