求齐次线性方程组 通解

求解啊啊啊啊啊啊啊啊啊啊啊啊啊啊... 求解啊啊啊啊啊啊啊啊啊啊啊啊啊啊 展开
 我来答
zzllrr小乐
高粉答主

推荐于2017-10-21 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78792

向TA提问 私信TA
展开全部

系数矩阵化最简行

1    1    1    1    

2    3    1    1    

4    5    3    3    



第2行,第3行, 加上第1行×-2,-4

1    1    1    1    

0    1    -1    -1    

0    1    -1    -1    



第1行,第3行, 加上第2行×-1,-1

1    0    2    2    

0    1    -1    -1    

0    0    0    0    



增行增列,求基础解系

1    0    2    2    0    0    

0    1    -1    -1    0    0    

0    0    1    0    1    0    

0    0    0    1    0    1    



第1行,第2行, 加上第3行×-2,1

1    0    0    2    -2    0    

0    1    0    -1    1    0    

0    0    1    0    1    0    

0    0    0    1    0    1    



第1行,第2行, 加上第4行×-2,1

1    0    0    0    -2    -2    

0    1    0    0    1    1    

0    0    1    0    1    0    

0    0    0    1    0    1    


得到基础解系:
(-2,1,1,0)T
(-2,1,0,1)T
因此通解是
C1(-2,1,1,0)T + C2(-2,1,0,1)T    

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
创作者bbWNSwkuTQ
2020-04-25
知道答主
回答量:1
采纳率:0%
帮助的人:1万
展开全部
可以把齐次方程组的百系数矩阵看成是向量组。
求向量组的极大无关组的一般步骤:
1. 把向量组作为矩阵的列向量构成度一个矩阵;
2. 用初等行变换将该矩阵化为阶梯阵;
3.主元所在列对应的原向量组即为极大无关组。

求齐次问线性方程组通解要先求基础解系,步骤:
a. 写出齐次方程组的系数矩阵答A;
b. 将A通过初等行变换化为阶梯阵;
c. 把阶梯阵中非主元列对应的变量作为自由元(n – r 个);
d.令自由元中一个版为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。

齐次线性方程组AX= 0:
若X1,X2… ,Xn-r为基础解系,则权X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-10-21
展开全部
可以把齐次方程组的系数矩阵看成是向量组。
求向量组的极大无关组的一般步骤:
1. 把向量组作为矩阵的列向量构成一个矩阵;
2. 用初等行变换将该矩阵化为阶梯阵;
3.主元所在列对应的原向量组即为极大无关组。

求齐次线性方程组通解要先求基础解系,步骤:
a. 写出齐次方程组的系数矩阵A;
b. 将A通过初等行变换化为阶梯阵;
c. 把阶梯阵中非主元列对应的变量作为自由元(n – r 个);
d.令自由元中一个为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。

齐次线性方程组AX= 0:
若X1,X2… ,Xn-r为基础解系,则X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式