统计学中假设检验的基本步骤有哪些
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;
如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
扩展资料
注意事项
要进行统计假设的检验, 必须利用各种不同的判据, 即利用规则来选择。假设的采用与拒绝, 通常在判据的前件中应有某个数量指标(称为统计判据)。
根据判据方式, 假设分为参数假设和非参数假设。按照参数统计结论, 通常应提出被研究特征在总体中分布的具体形式, 因为在这种情况下, 统计学通常是以分布参数(平均值、方差、回归系数)的利用为依据的。非参数判据的优点是能把判据用于只靠名义级或次序级完成的特征度量上。
否定零假设的判据值总体能构成否定域。如果某一点能将否定域与接受零假设的区域划分开来, 这一点就称为临界点。
参考资料来源:百度百科-假设检验
参考资料来源:百度百科-统计假设检验