大一高数求解
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
展开全部
解:分享一种解法。
设I(θ)=∫(0,1)arctan(θx)dx/[x√(1-x^2)],则I(0)=0,I(1)=∫(0,1)arctanxdx/[x√(1-x^2)]。
由I(θ)两边对θ求导,有I'(θ)=∫(0,1)dx/{[1+(θx)^2]√(1-x^2)}。再设x=sinα,则I'(θ)=∫(0,π/2)dα/[1+(θsinα)^2]。
而∫(0,π/2)dα/[1+(θsinα)^2]=∫(0,π/2)d(tanα)/[1+(1+θ^2)(tanα)^2]=[1/√(1+θ^2)]arctan[√(1+θ^2)tanα]丨(α=0,π/2)=(π/2)/√(1+θ^2),
∴I'(θ)=(π/2)/√(1+θ^2)。∴I(1)=I(1)-I(0)=∫(0,1)I'(θ)dθ=(π/2)∫(0,1)dθ/√(1+θ^2)=(π/2)ln丨θ+√(1+θ^2)丨丨(θ=0,1)=(π/2)ln(1+√2)。
故,原式=I(1)=(π/2)ln(1+√2)。供参考。
设I(θ)=∫(0,1)arctan(θx)dx/[x√(1-x^2)],则I(0)=0,I(1)=∫(0,1)arctanxdx/[x√(1-x^2)]。
由I(θ)两边对θ求导,有I'(θ)=∫(0,1)dx/{[1+(θx)^2]√(1-x^2)}。再设x=sinα,则I'(θ)=∫(0,π/2)dα/[1+(θsinα)^2]。
而∫(0,π/2)dα/[1+(θsinα)^2]=∫(0,π/2)d(tanα)/[1+(1+θ^2)(tanα)^2]=[1/√(1+θ^2)]arctan[√(1+θ^2)tanα]丨(α=0,π/2)=(π/2)/√(1+θ^2),
∴I'(θ)=(π/2)/√(1+θ^2)。∴I(1)=I(1)-I(0)=∫(0,1)I'(θ)dθ=(π/2)∫(0,1)dθ/√(1+θ^2)=(π/2)ln丨θ+√(1+θ^2)丨丨(θ=0,1)=(π/2)ln(1+√2)。
故,原式=I(1)=(π/2)ln(1+√2)。供参考。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询