请问等边三角形内切圆的半径怎么算
设等边三角形的边长是a,则内切圆的半径是(√3/6)a,推导过程如下:
如下图所示,△ABC是全等三角形,圆O是内切圆,切点是D,E 。
连接OE,OD,因为相切,所以OE垂直BC,OD垂直AB
所以在,△DBO和△EBO中
DO=EO
BO=BO
∠BDO=∠BEO
因此可以证得△DBO和△EBO全等
所以∠DBO=∠EBO=30°
同理,可证的∠ECO=30°
因此BE=CE=a/2
由正切函数可得
OE/BE=tan30°=√3/2
所以
OE=BEx√3/2
=a/2 x√3/2
=(√3/6)a
扩展资料:
等边三角形的性质
1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
2、等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)
3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。
4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
5、等边三角形内任意一点到三边的距离之和为定值。(等于其高)
6、等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)
内切圆半径为6分之根号3乘以a。假设等边三角形的边长为a,那么长的一半为a/2,根据勾股定容理,所以三角形的高是√[a²-(a/2)²]=√3a/2。
又因为是等边三角形,所以三角形的四心合一。分高为2:1,其中长的是外接圆半径,短的是内切圆半径。所以,内切圆半径是6分之根号3乘以a。
等边三角形内切圆相关知识
1、与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形,三角形的内心是三角形三条角平分线的交点。
2、三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆),且内切圆圆心定在三角形内部。
3、在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
4、内切圆的半径为r=2S/C,当中S表示三角形的面积,C表示三角形的周长。
5、面积法;1/2lr(l周长)用于任意三角形。
以上内容参考 百度百科-三角形的内切圆
设等边三角形的边长是a,则内切圆的半径是(√3/6)a,推导过程如下:
△ABC是全等三角形,圆O是内切圆,切点是D,E 。
连接OE,OD,因为相切,所以OE垂直BC,OD垂直AB
所以在,△DBO和△EBO中
DO=EO
BO=BO
∠BDO=∠BEO
因此可以证得△DBO和△EBO全等
所以∠DBO=∠EBO=30°
同理,可证的∠ECO=30°
因此BE=CE=a/2
由正切函数可得
OE/BE=tan30°=√3/2
所以
OE=BEx√3/2
=a/2 x√3/2
=(√3/6)a
三角形外接圆半径关系:
r^2+OI^2= (R-r)^2
在直角三角形的内切圆中,有这样两个简便公式:
1、两直角边相加的和减去斜边后除以2,得数是内切圆的半径。
2、两直角边乘积除以直角三角形周长,得数是内切圆的半径。
r=(a+b-c)/2(注:r是Rt△内切圆的半径,a, b是Rt△的2个直角边,c是斜边)
r=ab/ (a+b+c)
以上内容参考:百度百科-三角形的内切圆
三角形内切圆的半径:(1/2)边长=1/(根号3)
三角形内切圆的半径:边长=1/(2倍根号3)