高等数学 函数的间断点及分类
2个回答
展开全部
1 间断点 x = 0
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
追问
瞎?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询