
1个回答
2017-09-19
展开全部
对隐式线性方程组, 注意以下几点:
1. 确定系数矩阵的秩r(A)
由此得 Ax=0 的基础解系所含向量的个数 n-r(A).
2. Ax=b 的解的线性组合仍是其解的充分必要条件是 组合系数的和等于1.
由此得特解
3. Ax=b 的解的差是Ax=0的解
由此得基础解系
此题:
1. r(A)=3 是已知, 四元线性方程组告诉我们 未知量的个数n=4.
所以 Ax=0 的基础解系所含向量的个数 n-r(A) = 4-3=1.
2. 特解β1= (2,0,0,2)^T 已给
3. 需再找一个特解,
已知 β2+β3=(0,2,2,0)T,
由上面说明中的(2) 知 1/2 (β2+β3) 也是Ax=b的解
故 β1- 1/2 * (β2+β3)也是 Ax=0 的解.
若此解非零, 则是一个基础解系 (因为Ax=0 的基础解系所含向量的个数是1)
PS. 基础解系也可以这样找:
(β2+β3)-2β1 = (-4,2,2,-4)^T ≠ 0.
1. 确定系数矩阵的秩r(A)
由此得 Ax=0 的基础解系所含向量的个数 n-r(A).
2. Ax=b 的解的线性组合仍是其解的充分必要条件是 组合系数的和等于1.
由此得特解
3. Ax=b 的解的差是Ax=0的解
由此得基础解系
此题:
1. r(A)=3 是已知, 四元线性方程组告诉我们 未知量的个数n=4.
所以 Ax=0 的基础解系所含向量的个数 n-r(A) = 4-3=1.
2. 特解β1= (2,0,0,2)^T 已给
3. 需再找一个特解,
已知 β2+β3=(0,2,2,0)T,
由上面说明中的(2) 知 1/2 (β2+β3) 也是Ax=b的解
故 β1- 1/2 * (β2+β3)也是 Ax=0 的解.
若此解非零, 则是一个基础解系 (因为Ax=0 的基础解系所含向量的个数是1)
PS. 基础解系也可以这样找:
(β2+β3)-2β1 = (-4,2,2,-4)^T ≠ 0.

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询